
A Distributed Algorithm for Least Constraining Slot Allocation

in MPLS Optical TDM Networks

Hassan Zeineddine and Gregor V. Bochmann,
University of Ottawa,

Ottawa, ON-K1N 6N5

Abstract - In this paper, we propose a distributed approach for

the least constraining slot allocation scheme in all-optical TDM

networks (LC) that was introduced in a previous work. The

driving force behind our proposal is the employment of the LC

scheme in a GMPLS context. After describing the basic data

model and messaging parameters, we focus on defining an

efficient LC resource status update scheme, which is essential to

achieve compatibility with GMPLS’ periodic link state update

standards. Basically, we reduce the rate of resource status

updates from once per call to once per few calls, and measure

the impact on network performance.

I. INTRODUCTION

In a previous work [1], we proposed the least constraining

slot (LC) scheduling scheme as a novel slot reservation

approach in all-optical TDM mesh networks without

buffering [2,3], which are synchronized on slots without

synchronization of frame boundaries. Thus, a time sliced

traffic segment that travels a route consisting of several links

may be carried by slots that have different positions within

the frames on the respective links. LC reduces call blocking

in these networks to an optimal rate close to what can be

achieved with full buffering. The “constraint” in LC is the

number of fixed routes that might use a time slot at a given

point in time. The algorithm selects the least constraining

slots on the route, hence the name “least constraining slot”.

Comparing its performance to the first fit (FF) approach [2],

and FF with optical timeslot interchangers (OTSI) [4], the LC

approach provided a performance gain close to the FF

approach with OTSI, but at a reduced complexity close to FF

without OTSI. The reported gain was consistent under

uniform and non-uniform traffic distribution. In addition, we

found that the LC approach outperformed the least loaded

(LL) approach in multi-fiber environments [5]. Thus, LC

proved to have an edge over LL, since the former is not

restricted to multi-fibers networks as is the latter. As a

general conclusion of our previous study, the LC approach

provided close to optimum performance in optical TDM

networks with no buffering.

In this paper, we propose a distributed solution for the least

constraining slot reservation scheme. Our aim is to employ

LC in a Generalized MPLS context [6]. We define the nodal

database and basic parameters to be added to GMPLS’

reservation and signaling messages. To comply with GMPLS

periodic link state updates, we intend to reduce the LC

resource status update rate to a level that matches GMPLS

standards and still maintains close to optimum performance.

In the subsequent sections, we review the LC algorithm and

describe the elements of our distributed scheme and how it

complies with GMPLS. Before concluding this work, we

discuss the effect of reducing the rate of resource status

updates on the network performance.

II. LC ALLOCATION SCHEME

Before describing the basic steps of the LC approach, we

should clarify the nomenclature used in [1] to provide a better

understanding of the presented concepts. Route, route-slot

and link-slot are essential concepts used in describing the LC

approach.

A network route is a series of unidirectional links

interconnected through intermediate nodes from a given

source node to a given destination node. Two routes are

considered intersecting if they have at least one link in

common. A node transmits data into a link in the form of

repeating frames of N equal timeslots. Due to link

propagation delay, frame alignment is not preserved along the

route. Considering link AB, a traffic segment forwarded on a

given timeslot at egress node A might be intercepted on a

different timeslot at ingress node B. Thus, a timeslot is better

identified with reference to a link; we use the term link-slot

ABx to describe timeslot x on link AB. There is no need to

mention the corresponding wavelength since only one

wavelength plane is considered in this study. Formally

speaking, a link-slot is a timeslot on a link with reference to

the local clock of its egress node.

In general, a transmitted traffic segment from source node S

to destination node D travels through different links along a

fixed route, and hence occupies a series of different link-slots.

For instance, if A and B are two intermediate nodes between S

and D, a series of link-slots would be described as SAx ABy

BDz. Knowing the delay of each link, an intermediate link-

slot UVj corresponds to a source link-slot SAi according to the

general rule () Nmoddij SU+= , where dSU is the total

delay of all links from node S to node U. Thus, knowing the

fixed route between a source-destination pair and all

associated link delays, we can easily derive the entire series

of link-slots for a given link-slot at the source. In this case,

we describe the series SAx ABy BDz with the simple

notation xSD , which we call a route-slot. The upper bar is

essential to differentiate it from a link-slot. A route-slot

xSD is considered available if all its constituent link-slots are

available; otherwise, xSD is unavailable. In a single fiber

environment, a link-slot is available if it is not reserved. On

the other hand, in a multi-fiber case, a link-slot is available if

it is free for at least one of the link fibers. To make our

approach generic, we develop it based on a multi-fiber

environment, and apply it to a single-fiber network as a

special case.

The exercise of allocating resources, for a communication

request, from node S to D is to find and reserve an available

route-slot xSD along a fixed route, which is assumed to be

given.

A. Definitions

If a link-slot XYj is part of a route-slot iSD , we write:

() Nmoddijwhere,SDinXY SXij += . (1)

Considering M fibers per link, we define the link-slot

availability
j

XYΑ , an integer between 0 and M, to be the

number of fibers on which XYj is free. If
j

XYΑ is equal to

zero, then XYj is unavailable. Furthermore, we define the

availability
i

SD
Α of a route-slot to be equal to the minimum

availability
j

XYΑ among its constituent link-slots,

()
j

ij
i

XY
SDinXY

SD
MIN Α=Α . (2)

Knowing the associated fixed route of each source-

destination pair, we derive the set Ω of all possible route-slots

in the network. We define
j

XYΩ to be a subset of Ω

consisting of all route-slots that contain link-slot XYj.

}{ ijiXY SDinXY|SD
j

Ω∈=Ω . (3)

We further define
j

XY'Ω to be a subset of
j

XYΩ consisting

of all route-slots whose availabilities are equal to
j

XYΑ .

}{
j

i
jj

XYSDXYiXY |SD' Α=ΑΩ∈=Ω . (4)

The purpose of
j

XY'Ω is to identify all route-slots whose

availabilities are decremented when XYi is reserved.

We designate the constraint of link-slot XYi to be the sum

of the availabilities of all route-slots belonging to
j

XYΩ .

∑ Α=
Ω∈

jXYi

i
j

SD
SDXYW . (5)

In a single fiber environment,
i

SD
Α becomes a binary

variable showing whether the route-slot is available (1) or not

(0); and hence,
j

XYW would reflect the number of available

route-slots containing XYj. In other words, it indicates the

number of routes that can potentially use the designated link-

slot.

Last, we define the constraint of a route-slot to be equal to

the total constraint of all its constituent link-slots:

∑=

ij

j
i

SDinXY
XYSD

WW . (6)

B. Allocation Principle

It is essential to reserve a link-slot which has the lowest

interference with other intersecting route-slots, i.e. having the

lowest constraint. This keeps more available route-slots in the

network, hence improving the blocking rate for subsequent

communication requests. Thus, the route-slot that has the

lowest constraint
i

SD
W would be the best choice on a given

route between S and D. In this case, only a minimal number

of route-slots in the network become unavailable when

serving a given call.

C. Constraint Update

After identifying the best route-slot, all constituent link-

slots are reserved. Consequently, the constraint of each link-

slot in each route-slot in
i

XY'Ω is modified according to the

algorithm, shown in Fig. 1.

Fig. 1: Constraint update algorithm

By definition (4),
j

XY'Ω contains all route-slots whose

availabilities are decremented due to a reservation of XYj. For

instance, when reserving XYj in a single fiber environment, all

route-slots in
j

XY'Ω become unavailable, and accordingly,

their availabilities flip from 1 to 0. Therefore, the constraint

of their constituent link-slots must be decremented since a

link-slot constraint is the sum of the availability of the

intersecting route-slots.

Finally, the same algorithm is repeated when freeing

resources, but the constraints are increased instead.

foreach ij SDinXY do

 1W:W
jj

XYXY −=

 foreach
j

XYn 'RT Ω∈ do

 if in SDRT ≠

 foreach nk RTinUV do

 1W:W
kk

UVUV −=

III. DISTRIBUTED APPROACH

 Aiming to make the LC scheme applicable in a GMPLS

context, we should define a distributed algorithm that blends

well with GMPLS protocols. In GMPLS, each node has a

database and exchanges link state information via update

messages based on the Open Shortest Path First (OSPF) [7]

or Intermediate System to Intermediate System (IS-IS)

routing protocols [8]. For connection reservation, GMPLS

uses the Resource Reservation Protocol with Traffic

Engineering (RSVP-TE) [9] or the Constraint-Based Routing

Label Distribution Protocol (CR-LDP) [10]. Both reservation

protocols require two phases: label request phase issued by

the source node and label response phase issued by the

destination.

The distributed LC approach requires three major

components: a database schema at each node, a reservation

protocol, and a link state update protocol.

A. Node Database

Each node in a network employing the distributed LC

approach maintains a database containing basic information

essential for the decentralized reservation process. Basically,

for each outgoing link XY at a node X, two lists must be

maintained: Links Info List (LIL) and Link-Slots Info List

(LSIL). LIL has entries for each link in the network that

shares a route with XY. A LIL’s entry corresponding to link

UV has the following structure:

� Total delay d in timeslot unit between nodes U and X. if

U is upstream from X, the delay is a positive integer;

otherwise, the delay is a negative.

� Common Route-Slots List (CRSL) containing entries for

all route-slots that have link XY and UV in their paths.

Each CRSL’s entry stores the route-slot’s availability and

a set of constituent link-slot ids.

LSIL has an entry for each link-slot on XY, which contains

the following data:

� Availability

� Constraint

B. Reservation process

Although the aim is to extend the existing RSVP-TE or

CR-LDP protocols, we define a new set of messages that can

be integrated later with the corresponding messages in these

protocols just to avoid lengthy technical discussions that go

beyond the scope of this paper. The distributed LC approach

uses the following messages during the slot reservation

process:

� Request (REQ): it contains source and destination node

ids, the cumulative delay, and a route-slot information list

(RSIL) which has the same structure as an LSIL. The

content of the REQ can be integrated with RSVP Path

message.

� Response (REP): it contains source and destination node

ids, a selected route-slot, the cumulative delay, and a

link-slot availability list (LSAL) indexed by link-slot.

The LSAL contains the availabilities for a selection of

link-slots. These parameters can be integrated with RSVP

Resv message.

� Release (REL): it contains destination node id, and a

link-slot. It can be integrated with RSVP Resv Teardown

message.

� Negative Acknowledgment (NACK): it is used to inform

the source of a denied request. This acknowledgment can

be realized by using RSVP Path Error message.

During a reservation process, the following steps are

performed:

1. The source node sends a REQ to the destination on a

predetermined route. It initially sets the REQ’s RSIL to

the outgoing link’s LSIL.

2. An intermediate node receives the request message, and

performs the following steps before forwarding the

received message to the next node on the route:

i. Identify matching link-slots on the outgoing link by

using the cumulative delay in the REQ.

ii. Add the link-slot constraints in the outgoing link’s

LSIL to the corresponding route-slot constraints in

REQ’s RSIL.

iii. Set the availability in each entry of the RSIL to the

availability of its corresponding link-slot only if the

latter value is less than the former.

iv. Add the corresponding delay d in the LIL to the

cumulative delay in the REQ.

3. When a destination node receives the REQ, it sends a

REP to the source node after setting the REP’s route-slot

field to the lowest weighed route-slot in the REQ’s RSIL.

It also sets the REP’s cumulative delay to the REQ’s

cumulative delay.

4. When an intermediate node receives the REP, it does the

following before forwarding the received REP to the next

node on the reverse route to the source.

i. Deduct the corresponding delay d in the LIL from the

REP’s cumulative delay.

ii. Identify and lock the link-slot that matches the

selected route-slot by referring to the cumulative

delay.

iii. Insert the availability of the corresponding link-slot

to the REP’s LSAL

When the REP message reaches the source node, the node

starts transmitting on the reserved route-slot. After

completing the communication process, the source sends a

REL message towards the destination to free all resources,

which were locked for serving the communication request.

A request for communication can be rejected either during

the REQ phase or the REP phase. If no matching resource is

available during a REQ phase, the REQ message is dropped

and a NACK is sent back to the source. In this case, the

connection is considered blocked. On the other hand, if two

REPs on two intersecting routes require the same available

link-slot on the intersection link, the corresponding

intermediate node locks this link-slot to the first arriving REP

and drops the late one. It sends a NACK to the source of the

dropped REP and a REL to its destination in order to free the

locked resources. In this case, the connection is not

considered blocked since the source node can retry with

another REQ. Further details on the rejection scenarios during

the REQ and REP phases can be found in [11].

C. Resource Status Update

With every established or released connection, the

constraints and availabilities of corresponding resources

change across the network. Therefore, a resource status

update scheme is required to keep the databases of all nodes

up to date. An update scheme can be instant or periodic. An

instant update is broadcasted by the source node upon route-

slot’s reservation or release. On the other hand, a periodic

update is frequently broadcast by all nodes like the OSPF link

state update mechanism. In both update schemes, we employ

an update message (UPD) similar to the OSPF Update

message. However, we append an LSAL as an extra

parameter.

While simulating irregularities and errors in the centralized

scheme, we explicitly forced our simulated algorithm to skip

the constraint update module for n successive calls before

executing it at the 1
rst

 call after n. We noticed that network

performance remained close to optimum for relatively large

n. It basically means that one resource status update every t

period of time could maintain close to optimum performance

and significantly reduce the associated signaling cost.

Instant Resource Status Update

 The following steps occur during an instant resource status

update process:

1. The source node notifies all nodes in the network about

the reservation of link-slots by broadcasting a UPD

message containing the LSAL that was originally carried

by the REP.

2. Each node receiving the notification performs the

following steps for each reserved link-slot in the LSAL:

i. Identify the outgoing link that shares a common

route with the reserved link-slot if any, by referring

to the LIL.

ii. Identify the corresponding local link-slot by using

the total delay from the reserved link’s upstream

node to this local node.

iii. Identify the route-slot joining the reserved link-slot

with the corresponding local link-slot. This can be

achieved by referring to the CRSL.

iv. If the availability of the route-slot identified in the

CRSL is equal to the availability of the reserved link-

slot, reduce the route-slot availability and the

constraint of the corresponding local link-slot.

Periodic Resource Status Update

In order to implement a periodic resource status update, the

following steps are essential:

1. At a fixed time interval t, every node in the network

compiles an LSAL and appends it to a UPD message

before broadcasting it to the network. A compiled LSAL

contains only link-slots availabilities whose values have

changed since the previous notification.

2. Each node receiving the notification performs the

following steps for each link-slot in the LSAL:

i. Process the first 3 steps of the instant update case.

ii. If receiving the first notification for a particular route-

slot after the down period t, set the availability of the

route-slot identified in the CRSL to the availability of

the considered link-slot. Otherwise, execute this step

only if the link-slot’s availability is the lowest of both

values. Depending on the resulting change ∆ in the

route-slot availability, the constraint of the

corresponding local link-slot should change

accordingly. If ∆ is positive, increase the link-slot

constraint by ∆; otherwise, decrease it by |∆|.

IV. SIMULATION RESULTS

In this section, we discuss the performance of the

distributed LC approach under various status update rates.

Our observations are based on simulation results plotted with

95% confidence intervals.

The simulation experiments are based on the 14-nodes 21-

link NSFNET network topology [12]. A link between two

nodes consists of dual unidirectional fibres with a fixed

capacity of 10 timeslot channels per fibre. Fixed shortest path

routing is used to derive paths between all source destination

pairs. Each path serves up to 10 concurrent connections at the

granularity of a transmission channel, i.e. one timeslot per

link along the path. Each simulation is repeated for 30 runs.

Calls arrive according to a Poisson process, and lasts for an

exponentially distributed period.

We study our scheme under two different traffic

distributions among source-destination pairs, uniform and

non-uniform. In the uniform traffic case, every pair is chosen

at random with equal constraint and hence having the same

traffic load in Erlang (mean arrival rate × mean holding time).

In the non-uniform case, source-destination pairs have

different constraints to achieve non-uniform traffic

distribution.

Fig. 2 shows the performance of the LC approach for

different status update rates. Best performance is obtained for

instant updates, that is, an update after each accepted or

terminated call. In the case that an update is only done after

10
5
 new accepted calls, we obtain what we call “degraded

performance”; this performance is approximately one half of

the best-performance level that is attained with instant

updates. Performance remains at that degraded level even if

we increase the update rate to once per 10
2
 calls arriving to

the network. However, if the update rate is once per 10 calls,

we obtain best performance as in the case of instant updates.

As a generalization, we consider that the performance is

unaffected if the update rate is greater than or equal to λ/α

where λ is the call inter-arrival rate, and α is a coefficient

related to the network size which is close to 10 for the

NFSNET.

Fig. 3 is a chart that shows samples of blocking probability

collected over several short periods of 10 calls each. To

reduce statistical variations caused by sampling over short

periods, the same simulation is repeated 10000 times with a

high load of 120 Erlang. The employed status update rate is

once per 500 calls after an initial period (not shown in the

diagram) of instant updates. We notice an initial transition

period of gradual performance degradation reflected in the

early samples. The transition is from the best-performance

level to the degraded performance level. The first couple of

samplings are close to the best performance rate of 0.027. If

we average out the statistical variations after the transition

period, the worst performance rate seems to stabilize at a

fixed level of 0.035 on average. The chart also shows that

subsequent (single) status updates do not reproduce the best

performance rate observed earlier. To discuss these results

further, we define the following:

- ωt: is the list of all recorded route-slots constraints in the

network. The constraint values are based on link-slot

constraints that are recorded in nodal databases.

- ώt: is the list of all actual route-slots constraints in the

network. The constraint values are based on actual link-

slot constraints that are not recorded in nodal databases.

- Low(SD, ωt): is a function that returns the route-slot on

route SD that has the lowest constraint according to ωt.

In the case of instant updates, ωt should always be equal to

ώt at any time t; i.e. ωt = ώt, and hence

Low(SD, ωt) = Low(SD, ώt) for all routes at any point in

time. This equation is essential for a perfect route-slot

allocation pattern and best network performance. Starting

from a perfect LC allocation pattern and stopping all further

updates, ωt and ώt would break ties after the first allocated

or de-allocated call; and ωt is said to be outdated. However,

the equation Low(SD, ωt) = Low(SD, ώt) might still hold for

a majority of routes during the first few allocated or de-

allocated calls. As long as this equation holds for the routes

at which all subsequent calls arrive, the system would

allocate the same route-slots that would be chosen in the case

of instant updates. Thus, the perfect LC route-slots allocation

pattern in the network is maintained, and hence best

performance is preserved. As soon as a call arrives at a route

SD where Low(SD, ωt) ≠ Low(SD, ώt), the resulting

allocation pattern becomes imperfect; and hence

performance starts to degrade. The length of the best

performance period preceding the degraded performance is

given by α/λ. Note that α depends on the probability

P/n(n-1); where n is the number of nodes in the network, and

P is the probability of having Low(SD, ωt) ≠ Low(SD, ώt) for

a given route SD (note that n(n-1) is the number of routes in

the network). P is relatively small during the first few calls

and increases gradually with every allocated or de-allocated

call as each route-slot affects the constraints of its

intersecting route-slots. During the best performance period,

the constraints in ώt will always be based on a perfect LC

allocation pattern. As a result, if (single) updates occur at a

period shorter than or equal to the best performance period,

ωt will always be based on a perfect LC pattern; best

performance is continually maintained. On the other hand, if

(single) updates occur at a longer period, ωt will most likely

be based on an imperfect allocation pattern leading to

degradation of performance.

Regardless of the update rate, network performance is at

the degraded level as long as the update interval is longer

than the best-performance period. Note that if the route-slot

allocation pattern becomes imperfect it reflects an imperfect

ώt. After an update, ώt gets copied to ωt which would

emphasize the pattern’s imperfection. Thus, further updates

emphasize rather than fix imperfection; and hence, the

irrelevance of update rates to the performance degradation

level is now clear.

Although the route-slot allocation pattern is imperfect, the

performance level is still better than the performance level of

the FF approach. Note that an outdated ωt still imposes an

order that the system follows when allocating route-slots.

This order is the result of the most recent LC update. It

actually gives different priorities to the route-slots in all

routes according to the constraints collected by the last

update. Note that the resulting priority order for different

routes is not arbitrary but rather synchronized based on the

LC update. This synchronization between different routes is

the essence behind the degraded performance level which is

better than the worst case scenario of the FF approach. As an

analogy, a synchronized traffic light system based on an

outdated traffic pattern would still manage traffic better than

a chaotic arbitrary system.

In a multi-fibers environment, an imperfect route-slot

allocations pattern can still produce a performance similar to

what is obtained with a perfect pattern (see Fig. 4). The

improved performance of an imperfect pattern in a multi-

fibers environment is mainly due to the additional number of

fibers. Although P in a multi-fibers environment is smaller

than in the single fiber case, it does not justify the difference

in performance. Its effect will be limited to slightly increasing

the perfection period. Regardless of this period, the pattern

would eventually become imperfect after few calls without

updates. However, the priority order that remains in effect

still produces close to optimal performance as shown in Fig.

4. Therefore, we conclude that network performance metrics

resulting from imperfect and perfect allocation patterns

converge as an effect of extra fibers.

V. CONCLUSION

In a previous work, we proposed the least constraining slot

reservation approach (LC) for all-optical TDM networks. In

this paper, we designed a distributed LC scheme in an attempt

to make it applicable in GMPLS networks. After specifying

the node database, we defined new parameters that need to be

added to the RSVP-TE or CR-LDP messages. In addition, we

developed two different resource status update schemes:

instant and periodic. The major challenge was to incorporate

the LC resource status update into GMPLS, which relies on

OSPF or IS-IS link state update mechanisms. Since GMPLS’

relies on global periodic updates, we have to skip a number of

calls before invoking the LC resource updates. We showed by

simulation that an update rate greater than or equal to λ/α

maintains close to optimal performance; where λ is the call

inter-arrival rate, and α is a coefficient related to the network

size which is close to 10 in NFSNET. For lower update rates,

performance degrades to a fixed level but does not converge

to the worst performance level reported with the first fit (FF)

approach; hence, stopping all subsequent updates throughout

the network lifetime after a brief period of instant updates

produces a performance level as good as any update rate less

than λ/α. In multi-fiber environments, the update reduction

has no significant effect on performance regardless of the

rate. In this case, stopping the instant updates at an early stage

of the network operation does not affect performance, and

hence the associated signaling bandwidth is spared. As a

general conclusion, the distributed LC scheme produces a

close to optimal performance in a GMPLS optical TDM

network after slightly extending the reservation protocol and

not changing the rate of link state updates.

REFERENCES

[1] H. Zeineddine and G. V. Bochmann, “Least Constrained Slot Allocation

in Optical TDM Networks,” Proc. IEEE Wireless and Optical

Communications Networks, July 2007, pp. 1-5.

[2] J. M. Yates, J. P. R. Lacey, and D. Everitt, “Blocking in multiwavelength

TDM networks,” Telecommunication Systems Journal, vol. 12, no. 1, pp. 1-

19, August 1999.

[3] H. Zang, J. P. Jue, and J. Mukherjee, “Photonic Slot Routing in All-

Optical WDM Mesh Networks,” Proc. IEEE Globecom '99, Rio de Janeiro,

Brazil, December 1999.

[4] H. Zeineddine, P. He, and G. V. Bochmann, “Optimization Analysis of

Optical Time Slot Interchanges in All-Optical Network,” Proc. IASTED

Wireless and Optical Communications, July 2006, pp. 207-212.

[5] B. Wen, R. Shenai, and K. Sivalingam, “Routing, Wavelength and Time-

Slot Assignment Algorithms for Wavelength-Routed Optical WDM/TDM

Networks,” Journal of Lightwave Technology, vol. 23, No. 9, September

2005.

[6] A. Banerjee, et al., “Generalized multiprotocol label switching: An

Overview of Routing and Management Enhancements,” IEEE Commun.

Mag. (2001) 144–150.

[7] J. Moy, “OSPF Version 2,” STD 54, RFC 2328, April 1998.

[8] D. Oran, “OSI IS-IS Intra-domain Routing Protocol,” RFC 1142,

February 1990.

[9] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,

“RSVP-TE: Extensions to RSVP for LSP Tunnels,” RFC 3209, December

2001.

[10] B. Jamoussi et al., “Constraint-Based LSP Setup using LDP,” RFC

3212, January 2002.

[11] X. Yuan, R. Gupta, and R. Melhem, “Distributed Control in Optical

WDM Networks,” IEEE Conf. on Military Communications, McLean, VA ,

October 1996.

[12] B. Mukherjee, “Optical WDM Networks,” Birkhauser, 2006.

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

30 35 40 45 50 80 120

Load (Erlang)

B
lo

c
k
in

g
 p

ro
b
a
b
ili

ty

1.E+02 1.E+01 1.E+00 FF 1.00E+05

Fig. 2: LC performance for different update rates (once per 1E+x calls)

0.025

0.03

0.035

0.04

0.045

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

Time (unit of 10 calls)

B
lo

c
k
in

g
 P

ro
b
a
b
ili

ty

Fig 3: LC performance measured every 10 calls – load is 120 Erlang –

 (update rate is once every 500 calls)

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

100 150 200 250 300 350

Load (Erlang)

B
lo

c
k
in

g
 p

ro
b
a
b
ili

ty

1.E+05 1.E+01 1.E+00 FF

Fig. 4: LC performance for different update rates (once per 1E+x calls)

in a 3-fibers network

